Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition.
نویسنده
چکیده
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of preattentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
منابع مشابه
Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: toward a unified theory of how the cerebral cortex works.
How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and monkey neurophysiological data from the prefrontal ...
متن کاملHow Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits ...
متن کاملLinking Visual Cortical Development to Visual Perception
A central question in cognitive science and neuroscience concerns how the visual cortex autonomously develops, stabilizes its own development, and then gives rise to visual perception in the adult. Much evidence suggests that the visual cortex generates representations of perceptual boundaries and surfaces. The present article focuses on how the visual cortex develops the circuitry that generat...
متن کاملHow does the cerebral cortex work? Development, learning, attention, and 3-D vision by laminar circuits of visual cortex.
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress toward explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sublamina. Here it is proposed how these layered circuits he...
متن کاملTowards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system.
One of the most exciting and open research frontiers in neuroscience is that of seeking to understand the functional roles of the layers of cerebral cortex. New experimental techniques for probing the laminar circuitry of cortex have recently been developed, opening up novel opportunities for investigating how its six-layered architecture contributes to perception and cognition. The task of try...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in brain research
دوره 165 شماره
صفحات -
تاریخ انتشار 2007